Repository logo
  • English
  • Yкраї́нська
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Персональні колекції співробітників та підрозділів
  3. Навчально-науковий інститут державного управління
  4. The Verhulst-Like Equations: Integrable OΔE and ODE with Chaotic Behavior
 
  • Details

The Verhulst-Like Equations: Integrable OΔE and ODE with Chaotic Behavior

Date Issued
2019
Author(s)
Andrianov, Igor 
Starushenko, Galina 
Kvitka, Sergey 
Khajiyeva, Lelya 
Abstract
In this paper, we study various variants of Verhulst-like ordinary differential equations (ODE) and ordinary difference equations (OΔE). Usually Verhulst ODE serves as an example of a deterministic system and discrete logistic equation is a classic example of a simple system with very complicated (chaotic) behavior. In our paper we present examples of deterministic discretization and chaotic continualization. Continualization procedure is based on Padé approximants. To correctly characterize the dynamics of obtained ODE we measured such characteristic parameters of chaotic dynamical systems as the Lyapunov exponents and the Lyapunov dimensions. Discretization and continualization lead to a change in the symmetry of the mathematical model (i.e., group properties of the original ODE and OΔE). This aspect of the problem is the aim of further research.
Subjects

Verhulst O∆E

Verhulst ODE

discretization

continualization

periodic motion

subharmonic

chaos

Poincaré section

Lyapunov exponent

Lyapunov dimension

File(s)
Loading...
Thumbnail Image
Name

квітка 11 .pdf

Size

3.96 MB

Format

Adobe PDF

Checksum

(MD5):f19708877037e59c2ae3d6e7d675166b

.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • End User Agreement
  • Send Feedback
Repository logo COAR Notify