Repository logo
  • English
  • Yкраї́нська
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Персональні колекції співробітників та підрозділів
  3. Кафедра гірничої інженерії та освіти
  4. Stress-strain state of the mine massif around the chambers of the second stage of mining
 
  • Details

Stress-strain state of the mine massif around the chambers of the second stage of mining

Date Issued
2014
Author(s)
Kononenko, M. N. 
Petlyovany, M. V. 
Zubko, S. A. 
Abstract
A stress-strain state of the rock mass around the chambers of the second stage of mining was analyzed with the help of thermodynamic method. This study is the question of the day as the ore reserves in the chambers of the second stage of mining are, as a rule, extracted being surrounded by the filling mass, and due to this the highest rates of the ore losses and contamination with the filling mass are observed. In connection with this, the study of the stress-strained state of the filling mass and establishment of a method for improving the massif stability presents a great interest today. A calculation scheme for modeling thermodynamic processes in the rock mass around the chambers was developed with the purpose to study the stress field and determine principles of radial stress changing in the filling mass of the surrounding chamber. A chamber in the layer at the depth of 740-840 m was simulated with the following average geotechnical conditions: depth of the extraction chamber, angle of the deposit depression, horizontal thickness of deposit, rock strength in the hanging layer against uniaxial compression, rock strength in the bottom layer against uniaxial compression, and stowing strength against uniaxial compression. The study determined areas with tensile stress in the rocks of the bottom layer, ore mass and filling mass, and their parameters (size, maximum tension) and formulated empirical equations for the dependences between radial tensions and distance to the chambers L of the second stage of mining. The areas of destructive deformation and their dimensions in the stowing mass around the chambers of the second stage of mining at the level 740-840 m were established. Maximum values are defined for the stresses acting in the stowing mass which, exceeding the ultimate strength, cause the mass failure into the space of the chamber of the second stage. In order to prevent the stowing mass failure it is recommended to make a consolidating layer of the solid stowing at the 2/3 height of the chamber in order to resist the high tensile stresses and to ensure the mass stability.
Subjects

unload area

radial stress

stowing mass

strength of the solid...

File(s)
Loading...
Thumbnail Image
Name

Kononenko_Petlyovany_Zubko_2014_GM_115_120-130.pdf

Size

583.28 KB

Format

Adobe PDF

Checksum

(MD5):9a71e71a0e41d0947377760e3cb9089f

.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • End User Agreement
  • Send Feedback
Repository logo COAR Notify