Показати скорочений опис матеріалу

dc.contributor.authorAndrianov, Igor V.
dc.contributor.authorAwrejcewicz, Jan
dc.contributor.authorStarushenko, Galina A.
dc.contributor.authorKvitka, Sergiy A.
dc.date.accessioned2023-04-19T08:27:59Z
dc.date.available2023-04-19T08:27:59Z
dc.date.issued2022
dc.identifier.citationEffective heat conductivity of a composite with hexagonal lattice of perfectly conducting circular inclusions: An analytical solution / Igor V. Andrianov, Jan Awrejcewicz, Galina A. Starushenko, Sergiy A. Kvitka // Z. Angew. Math. Mech. – 2022. – Vol. 102, Iss. 11. – Pp. 1-13.uk_UA
dc.identifier.urihttp://ir.nmu.org.ua/handle/123456789/163202
dc.description.abstractPaper is devoted to the effective stationary heat conductivity for the fibre composite materials. We are aimed on getting on analytical expression for effective thermal conductivity coefficient. Asymptotic homogenization approach, based on the multiple scale perturbation method, is used. This allows to reduce the original boundary value problem in multiply connected domain to the sequence of boundary value problems in simply connected domains. These problems include: the local problem for the periodically repeated cell and homogenized problem with effective coefficient. It is shown that for densely packed and high contrast fibre composites, the cell problem can be solved analytically. For this aim, lubrication approach (asymptotics of thin layer) has been employed. We also generalise obtained solution to the case of medium-sized inclusions in the framework of the Padé approximants.uk_UA
dc.language.isoenuk_UA
dc.subjectstationary heat conductivityuk_UA
dc.subjectfibre composite materialsuk_UA
dc.subjectasymptotic homogenization approachuk_UA
dc.subjectscale perturbation methoduk_UA
dc.subjectlubrication approachuk_UA
dc.titleEffective heat conductivity of a composite with hexagonal lattice of perfectly conducting circular inclusions: An analytical solutionuk_UA
dc.typeArticleuk_UA


Долучені файли

Thumbnail

Даний матеріал зустрічається у наступних фондах

Показати скорочений опис матеріалу