Показати скорочений опис матеріалу

dc.contributor.authorAndrianov, Igor
dc.contributor.authorStarushenko, Galina
dc.contributor.authorKvitka, Sergey
dc.contributor.authorKhajiyeva, Lelya
dc.date.accessioned2023-04-20T11:40:51Z
dc.date.available2023-04-20T11:40:51Z
dc.date.issued2019
dc.identifier.citationThe Verhulst-Like Equations: Integrable OΔE and ODE with Chaotic Behavior / Igor Andrianov, Galina Starushenko, Sergey Kvitka, Lelya Khajiyeva // Symmetry. – 2019. – Vol. 11, 1446 – Pp. 1-15..uk_UA
dc.identifier.urihttp://ir.nmu.org.ua/handle/123456789/163281
dc.description.abstractIn this paper, we study various variants of Verhulst-like ordinary differential equations (ODE) and ordinary difference equations (OΔE). Usually Verhulst ODE serves as an example of a deterministic system and discrete logistic equation is a classic example of a simple system with very complicated (chaotic) behavior. In our paper we present examples of deterministic discretization and chaotic continualization. Continualization procedure is based on Padé approximants. To correctly characterize the dynamics of obtained ODE we measured such characteristic parameters of chaotic dynamical systems as the Lyapunov exponents and the Lyapunov dimensions. Discretization and continualization lead to a change in the symmetry of the mathematical model (i.e., group properties of the original ODE and OΔE). This aspect of the problem is the aim of further research.uk_UA
dc.language.isoenuk_UA
dc.subjectVerhulst O∆Euk_UA
dc.subjectVerhulst ODEuk_UA
dc.subjectdiscretizationuk_UA
dc.subjectcontinualizationuk_UA
dc.subjectperiodic motionuk_UA
dc.subjectsubharmonicuk_UA
dc.subjectchaosuk_UA
dc.subjectPoincaré sectionuk_UA
dc.subjectLyapunov exponentuk_UA
dc.subjectLyapunov dimensionuk_UA
dc.titleThe Verhulst-Like Equations: Integrable OΔE and ODE with Chaotic Behavioruk_UA
dc.typeArticleuk_UA


Долучені файли

Thumbnail

Даний матеріал зустрічається у наступних фондах

Показати скорочений опис матеріалу