Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ir.nmu.org.ua/handle/123456789/167204
Назва: An explainable AI approach to agrotechnical monitoring and crop diseases prediction in Dnipro region of Ukraine
Автори: Laktionov, Ivan
Diachenko, Grygorii
Rutkowska, Danuta
Kisiel-Dorohinicki, Marek
Ключові слова: explainable AI;IoT;ANFIS;agrotechnical monitoring;disease prediction;crop
Дата публікації: 2023
Бібліографічний опис: An explainable AI approach to agrotechnical monitoring and crop diseases prediction in Dnipro region of Ukraine / Ivan Laktionov, Grygorii Diachenko, Danuta Rutkowska, Marek Kisiel-Dorohinicki // Journal of Artificial Intelligence and Soft Computing Research. – 2023. – Vol. 13, No. 4. – Pp. 247-272.
Короткий огляд (реферат): The proliferation of computer-oriented and information digitalisation technologies has become a hallmark across various sectors in today’s rapidly evolving environment. Among these, agriculture emerges as a pivotal sector in need of seamless incorporation of high-performance information technologies to address the pressing needs of national economies worldwide. The aim of the present article is to substantiate scientific and applied approaches to improving the efficiency of computer-oriented agrotechnical monitoring systems by developing an intelligent software component for predicting the probability of occurrence of corn diseases during the full cycle of its cultivation. The object of research is non-stationary processes of intelligent transformation and predictive analytics of soil and climatic data, which are factors of the occurrence and development of diseases in corn. The subject of the research is methods and explainable AI models of intelligent predictive analysis of measurement data on the soil and climatic condition of agricultural enterprises specialised in growing corn. The main scientific and practical effect of the research results is the development of IoT technologies for agrotechnical monitoring through the development of a computer-oriented model based on the ANFIS technique and the synthesis of structural and algorithmic provision for identifying and predicting the probability of occurrence of corn diseases during the full cycle of its cultivation.
URI (Уніфікований ідентифікатор ресурсу): http://ir.nmu.org.ua/handle/123456789/167204
Розташовується у зібраннях:Кафедра електропривода

Файли цього матеріалу:
Файл Опис РозмірФормат 
An-Explainable-AI-Approach-to-Agrotechnical-Monitoring-and-Crop-Diseases-Prediction-in-Dnipro-Region-of-Ukraine.pdf4,08 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.